The velocity extraction and feature analysis of glacier surface motion in the Gongar region based on multi-source remote sensing data

Author:

Gu Fang,Zhang Sicong,Zhang Qinqin,Li Dan,Fu Yingzi,Chen Xuehua

Abstract

The movement of glaciers plays a crucial role in environmental and geological processes, significantly influencing the formation and dynamics of ice bodies. This study leverages feature tracking technology to analyze optical and Synthetic Aperture Radar (SAR) remote sensing imagery, specifically GF-1 optical images and GF-3, Sentinel-1 SAR images, captured during the 2020 to 2021 ablation season in Gongar. The aim was to quantify glacier surface velocities and to evaluate the comparative effectiveness of different remote sensing modalities in capturing these dynamics. Our findings indicate a strong consistency in the spatial distribution of glacier surface velocities derived from diverse remote sensing data sources, with high-precision optical imagery (GF-1) yielding the most accurate velocity measurements, followed by Sentinel-1 SAR data. Notably, large glaciers in Gongar exhibited rapid movements, with an average velocity of 0.16 m/d, primarily at elevations between 4,500 and 6,500 m. The fastest velocities were recorded at approximately 4,500 m elevation. Glaciers with inclines ranging from 10° to 60° displayed the highest velocities within the 20°–30° slope range. It was observed that glaciers on the southeast slope moved faster, exhibiting the highest average surface velocity, in contrast to those on the west slope, which moved more slowly. The surface velocity of the ice tongue region of Krayaylak Glacier that the largest glacier in Pamir, was observed to be lower than 0.6 m/d, indicating a slow movement speed. The study also reveals that the effectiveness of different remote sensing data in detecting glacier velocity in Gongar, with high-resolution data more accurately capturing surface velocities in melting areas or those with slower movement. This study underscores the importance of multi-source remote sensing data in understanding glacier dynamics and contributes valuable insights into the mechanisms driving glacier movements.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3