Thermomechanical coupling seepage in fractured shale under stimulation of supercritical carbon dioxide

Author:

Liu Guojun,Shang Delei,Chu Peng,Zhao Yuan,Lu Jun,Li Jianhua

Abstract

As a waterless fracturing fluids for gas shale stimulation with low viscosity and strong diffusibility, supercritical CO2 is promising than the water by avoiding the clay hydration expansion and reducing reservoir damage. The permeability evolution influenced by the changes of the temperature and stress is the key to gas extraction in deep buried shale reservoirs. Thus, the study focuses on the coupling influence of effective stress, temperature, and CO2 adsorption expansion effects on the seepage characteristics of Silurian Longmaxi shale fractured by supercritical CO2. The results show that when the gas pressure is 1–3 MPa, the permeability decreases significantly with the increase in gas pressure, and the Klinkenberg effects plays a predominant role at this stage. When the gas pressure is 3–5 MPa, the permeability increases with the increase in gas pressure, and the influence of effective stress on permeability is dominant. The permeability decreases exponentially with the increase in effective stress. The permeability of shale after the adsorption of CO2 gas is significantly lower than that of before adsorption; the permeability decreases with the increase in temperature at 305.15 K–321.15 K, and with the increase in temperature, the permeability sensitivity to the temperature decreases. The permeability is closely related to supercritical CO2 injection pressure and volume stress; when the injection pressure of supercritical CO2 is constant, the permeability decreases with the increase in volume stress. The results can be used for the dynamic prediction of reservoir permeability and gas extraction in CO2-enhanced shale gas development.

Funder

Natural Science Foundation of Hunan Province

Publisher

Frontiers Media SA

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3