Construction of street tree risk assessment system and empirical analysis based on non-destructive testing technologies

Author:

He Kun,Wei Longlong,Wang Benyao

Abstract

The traditional visual tree assessment method is subjective in evaluating tree risks and therefore not effective in precisely detecting internal decay in tree trunk and root systems. To improve the accuracy of street tree risk assessment, a new nondestructive testing method was proposed. This new tree risk assessment method combines different non-destructive testing technologies, such as sonic tomography and ground-penetrating radar, which could significantly increase the accuracy of risk assessment in tree trunks and roots. The method was applied to evaluate the risk of 1,001 street trees in Shanghai’s historical feature protection area. The results revealed that despite most street trees having low branch and trunk risk levels, more than one-third had high root risk levels. The risk factors of street trees were mainly in the trunk and root system, with a significant correlation between the street tree risk level and tree cavities, diseases, and insect pests, as well as the depth and range of the root distribution, leaning, and internal decay in trunks. With the help of non-destructive testing and risk assessment analysis, as well as targeted prevention measures, the possibility of street risk damage was largely reduced, including street trees tilting and collapsing during typhoons, etc.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3