Applicability of Accurate Ground Motion Estimation Using Initial P Wave for Earthquake Early Warning

Author:

Wang Zijun,Zhao Boming

Abstract

The earthquake early warning (EEW) system is capable of mitigating seismic hazards and reducing deaths, injuries, and economic losses. Although EEW approaches have already been developed worldwide, improving the accuracy and applicability is still controversial. Aiming at the ground motion estimation using the initial P wave, we investigated eight representative characteristic parameters, i.e., the peak measurements and integral quantities, using the database of the 2008 Wenchuan earthquake, where the aftershocks with the criteria that 4.0 ≤ Ms ≤ 6.5 and epicentral distance less than 150 km are analyzed. We established the relationships between the eight characteristic parameters and four ground motion parameters, respectively, based on which the estimation accuracy and reliability and the extent to which the increasingly expanding time windows could affect the estimates are analyzed accordingly. We found that the integral quantities could also be a robust estimator for peak ground acceleration (PGA), peak ground velocity (PGV), and spectral intensity (SI), while the peak measurement is more useful in estimating peak ground displacement (PGD). In addition, for estimating the ground motion of events with magnitudes less than 6.5, a 2-s window could effectively improve the estimation accuracy by approximately 11.5–18.5% compared with using a 1-s window, as the window increases to 3 s, the accuracy would further improve while the growth rate will be reduced to around 3.0–8.0%.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3