Risk assessment of deep excavation construction based on combined weighting and nonlinear FAHP

Author:

Liu Shihao,Song Zhanping,Zhang Yong,Guo Desai,Sun Yinhao,Zeng Tao,Xie Jiangsheng

Abstract

Deep excavation construction safety has become a challenging and crucial aspect of modern infrastructure engineering, and its risk assessment is frequently carried out using the Fuzzy Analytic Hierarchy Process (FAHP). However, when using FAHP to evaluate the risks of deep excavation construction, the results of the weightings obtained through subjective weighting are heavily influenced by the subjective factors of the evaluators. In addition, using linear operators to calculate the risk level can easily cause a weakening effect on the influence of prominent risk factors, resulting in poor rationality of the evaluation results. To address these problems, this paper constructs a deep excavation construction risk evaluation model based on combined weighting and nonlinear FAHP. The WBS-RBS method is used to guide the construction of the risk evaluation index system for deep excavation construction. The combined weighting values of subjective and objective weightings are calculated through the game theory combined weighting method. The fuzzy relation matrix is constructed using the membership degree vector obtained from the expert evaluation method. Nonlinear operators are introduced for comprehensive calculation. According to the maximum membership degree principle, the final risk level of the excavation construction is obtained. The newly constructed model is applied to the risk analysis of the deep excavation construction of the Rongmin Science and Innovation Park project in Xi’an. The evaluation result for the excavation construction risk is N= [0.3125, 0.3229, 0.1939, 0.0854, 0.0854], and according to the maximum membership degree principle, the risk level of the excavation is classified as Level 2, which is a relatively low risk. Based on the deep excavation construction of the Rongmin Science and Innovation Park project, this paper discusses the differences between the new model and the traditional FAHP evaluation method, further verifies the reliability of the new model, optimizes the construction plan based on the evaluation results, avoids risks, and determines its guiding significance.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3