Revisiting the different responses of the following Indian summer monsoon rainfall to the diversity of El Niño events

Author:

Zhang Xiya,Xu Kang,Wang Weiqiang,He Zhuoqi

Abstract

There is evidence that the interannual relationship between El Niño events and the following Indian summer monsoon rainfall (ISMR) has weakened with the more frequent occurrence of central Pacific (CP) El Niño events. We revisited the following ISMR responses to the two different types of El Niño events using observations and reanalysis datasets. Our results show that the ISMR anomalies associated with eastern Pacific (EP) and CP El Niño events are different, with decreased (increased) rainfall in early summer (June–July) following EP (CP) El Niño events. This is primarily attributed to the different responses to anomalous warming of the sea surface temperature (SST) in the northern Indian Ocean (NIO), which is characterized by double peaks in the warming SST during EP El Niño events, but only one peak during CP El Niño events. For EP El Niño events, the second SST warming peak in early summer contributes to the lower level antisymmetric wind pattern over the tropical Indian Ocean (TIO), which delays the onset of the Indian summer monsoon (ISM) and decreases the supply of moisture to India, implying a decrease in the ISMR. By contrast, for CP El Niño events, the cooling SST over the western TIO directly induces a significantly positive meridional SST gradient and drives the lower level southwesterly wind anomalies, resulting in an eastward shift in the decreased antisymmetric winds over TIO and the early onset of ISM. These circulation features are associated with anomalous upper-level divergence over TIO and sinking over India, jointly leading to the excess ISMR in early summer. These results suggest that, in addition to the key role of the warming of the NIO SST, cooling of the SST over the western TIO during CP El Niño events should be considered carefully in understanding the El Niño–ISMR relationship.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Youth Innovation Promotion Association of the Chinese Academy of Sciences

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3