Formation mechanism and implication of analcime in the sandstone reservoirs of the Permian Jingjingzigou formation in the Jinan sag, southern Junggar basin, NW China

Author:

Lin Tong,Wang Weiwei,Ma Qiang,Kang Jilun,Yang Runze,Liu Xiaohong

Abstract

Analcime plays a significant role in sandstone reservoirs as an authigenic diagenetic mineral in the Junggar Basin (northwestern China). However, the origin and controls on the reservoirs have received remarkably little attention. This study investigates the formation mechanism of analcime in the Middle Permian strata in the Jinan sag (southern Junggar Basin) through petrography and geochemistry. The results show that analcime is formed through early alkaline hydrolysis of volcanic materials under specific temperature and pressure conditions. The reservoir rocks primarily consist of various lithic sandstones, including volcanic debris such as basalt, andesite, and tuff. Analcime is characterized as rich in aluminium and poor in sodium, classified as low-silica analcime with a low Si-Al ratio (1.98–2.38). Furthermore, various other diagenetic minerals, such as glauconite, chlorite, albite, and calcite have been identified. The primary reservoir space chiefly consists of intragranular dissolved pores of analcime, while secondary pores are formed by intragranular pores of feldspar and lithic, along with some remaining intergranular pores. Cementation of analcime during early diagenesis changes primary pore structures and reduces reservoir properties. The low-silica analcime dissolves due to acidic pore fluids associated with three stages of oil and gas charging, transforming into albite and creating numerous secondary pores, thereby enhancing reservoir quality.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3