Water Vapor Changes Affect Cross-Seasonal Strong Drought Events in the Eastern Region of Northwest China

Author:

Zhang Yu,Liu Kang,Li Yaohui,Shen Wei,Ren Yulong,Zeng Dingwen,Sha Sha

Abstract

Drought in eastern Northwest China (ENC) is severely affected by water vapor conditions. An in-depth study of the primary sources of water vapor and its characteristics, at intraseasonal and interannual timescales, was conducted. This information is crucial for further study of the causes and mechanisms of extreme droughts and floods in the ENC. This study evaluated the spatial distribution and transport characteristics of water vapor over ENC during the 1981–2019 period based on the fifth generation of the European Center for Medium-Range Weather Forecasts atmospheric reanalyzes data of the global climate (ERA5). We studied the water vapor transport routes, water vapor convergence, water vapor budgets as well as the changes in water vapor fluxes and budgets over time in four areas surrounding ENC. The Mediterranean Sea, Black Sea, Caspian Sea, Indian Ocean, Bay of Bengal, and the South China Sea were the main sources of water vapor in ENC, supplemented by mid to high-latitude continental sources. The monthly change in water vapor flux in ENC exhibited the peak on July. The transport of water vapor in ENC was mainly toward the east and north. For most cross-seasonal drought events, the water vapor output is the main way in the south boundary and the west boundary. However, for the longest duration of cross-seasonal strong drought events, it is characterized by that the water vapor output is the main way in the south boundary, while the water vapor input in the north boundary is obviously weak. Water vapor paths in cross-seasonal strong drought events are analyzed, by which the Hybrid Single-Particle Lagrangian Integrated Trajectory model (HYSPLIT). The intensity of the subtropical high in the western Pacific is weak and the position is south, which corresponds to the occurrence of cross-seasonal strong drought in the ENC.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3