Geodynamic seawater-sediment porewater evolution of the east central Atlantic Paleogene ocean margin revealed by U-Pb dating of sedimentary phosphates

Author:

Aubineau Jérémie,Parat Fleurice,Chi Fru Ernest,El Bamiki Radouan,Mauguin Olivia,Baron Fabien,Poujol Marc,Séranne Michel

Abstract

Emerging evidence suggests that U-Pb and Lu-Hf ages of sedimentary apatite group minerals are often younger than their biostratigraphic ages. However, U-Pb dating of exquisitely preserved carbonate fluorapatite (CFA) is rare. The Upper Cretaceous/Paleogene marine sedimentary rocks of the Moroccan High Atlas host phosphate-rich sediments bracketed by calcareous nannofossil Zones (NP4-NP9) of late Danian to Thanetian age. Here, we use a laser-ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) to decipher whether CFA minerals are suitable for U-Pb chronostratigraphy and whether they can reveal the sedimentary and seawater history from which they formed. U-Pb dating of the CFA grains yields ages of 42.9 ± 1.3 Ma (MSWD = 2.3) and 35.7 ± 2.8 Ma (MSWD = 1.3) from three distinct phosphate-rich beds, being >15 million years younger than the expected biostratigraphic age. Combined scanning electron microscopy, X-ray diffraction, and infrared spectroscopy analyses, associate the Mg-rich clay minerals sepiolite and palygorskite, with micro-CFA crystals, while LA-ICP-MS trace element, rare earth element, and yttrium content for primary CFA grains, collectively point to long-term early diagenetic adsorption from oxygenated seawater-dominated porewater fluids. Authigenic clay minerals display a seawater-like pattern, with negligible U concentrations suggesting limited clay mineral influence on U-Pb dating of the CFA crystals. Considering the absence of extensive post-depositional alteration, we propose that because of their large surface area, the µm-sized CFA crystallites facilitated real-time surface adsorption and desorption of elements and diffusion processes. These conditions generated long-term open system connection of sediments with overlying seawater, enabling continuous U-Pb exchange for 15–25 Myr after phosphate precipitation. The data suggest that system closure was potentially associated with sediment lithification and the Atlas orogeny, pointing to stable oxygenation of shallow marine waters along the eastern passive margin of the central Atlantic Ocean in the Paleogene.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3