Impact of precipitation on Beishan landslide deformation from 1986 to 2023

Author:

Liu Meng,Yang Wentao,Xu Chong,Yang Yuting,Taylor Liam,Shi Peijun

Abstract

Investigating the response of landslide activity to climate change is crucial for understanding the disastrous effects of climate change on high mountains. However, the lack of long-term, spatial–temporal consistent measurement of landslide activity prohibits the study of this relationship. In this work, we used two methods to derive the time series of a landslide’s deformation and study its relationship with precipitation in the northeastern Tibetan Plateau. The small baseline subset-interferometric synthetic aperture radar (SBAS-InSAR) method with Sentinel-1A images is first applied to derive time series of the landslide’s deformation from 2020 to 2021. A recently developed method to derive cumulative deformations of optical images was used with Landsat 5 and Sentinel-2 images to derive the long-term deformation time series from 1986 to 2023. Centimeter-scale deformations detected by using the InSAR method are mainly located in the upper and eastern parts of the landslide, whereas meter-scale deformations detected by using the optical method are in the middle of the landslide. Time-series results from both methods show that intra-annual initiations of the landslide’s deformation occurred in rainy months (from July to October). Although there seems to be no direct relations between inter-annual deformations and precipitation, significant displacements since 2020 occurred after exceptionally wet years from 2018 (with a record-breaking precipitation year in 2020). With optical images, we found that the maximum cumulative deformation of the landslide has been >35 m since 1986 with major deformations (>20 m) found after 2020, which may indicate an imminent risk to the Lijie town near the toe of the landslide. With climate change, increased precipitation is expected in future, which may trigger more similar landslides in the vicinity of this region. This work demonstrates an executable framework to assess landslide hazard risk under climate change.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3