Gravity inversion constrained by OBS receiver function reveals crustal structure in Ryukyu Trench

Author:

Yang Tingwei,Xu Ya,Du Nanqiao,Xu Tao,Cao Danping,Nan Fangzhou,Chu Wei,Liang Ce,Hao Tianyao

Abstract

The Ryukyu Trench is located in the northern Philippine Sea. The subduction of the Philippine Sea Plate to the Eurasia Plate along the Ryukyu Trench in the NNW direction leads to extremely complex tectonic processes such as subduction, collision, accretion, and back-arc expansion. It is of great significance to obtain the crustal structure of the Ryukyu Trench for understanding the crustal deformation characteristics, subduction direction and the scale of the Philippine Sea Plate. The ocean bottom seismometer (OBS) could provide important information on the deep structure of the oceanic area, and the wide coverage of gravity anomaly can provide more constraints for the regional crustal structure. In this study, we put the time-delay term of the sedimentary layer into the H-κ stacking formula, which eliminates the influence of the sedimentary layer in traditional H-κ stacking. Based on the accurate crustal thickness at OBS locations, a gravity inversion method is proposed to solve the problem of non-uniqueness in gravity data and limited distribution of OBSs. By using this method, we obtain a crustal structure with higher resolution than Crust1.0 model in Ryukyu Trench. The results show that the crustal thickness in the Ryukyu Trench region thickens along the NNW subduction direction, revealing that the Philippine Plate’s subduction direction towards the Eurasian Plate is in the NNW direction.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3