Revisiting Late Pleistocene Loess–Paleosol Sequences in the Azov Sea Region of Russia: Chronostratigraphy and Paleoenvironmental Record

Author:

Chen Jie,Stevens Thomas,Yang Taibao,Qiang Mingrui,Matishov Gennady,Konstantinov Evgeny,Kurbanov Redzhep,Zeng Biao,Shi Peihong

Abstract

Loess-paleosol sequences are the most intensively studied terrestrial archives used for the reconstruction of Late Pleistocene environmental and climatic changes in the Azov Sea region, southwest Russia. Here we present a refined chronostratigraphy and a multiproxy record of Late Pleistocene environmental dynamics of the most complete and representative loess–paleosol sequences (Beglitsa and Chumbur-Kosa sections) from the Azov Sea region. We propose a new chronostratigraphy following the Chinese and Danubean loess stratigraphic models that refines the subdivision of the Last Interglacial paleosol (S1) complex in two Azov Sea sites, resolve the uncertainty of the stratigraphic position of the weakly developed paleosol (L1SSm) in Beglitsa section, and allow for direct correlation of the Azov Sea sections with those in the Danube Basin and the Chinese Loess Plateau. More importantly, it may serve as a basis for better constraining local and regional chronostratigraphic correlations, and facilitate the interpretation of climatic connections and possible forcing mechanisms responsible for the climatic trends in the region. In addition, a general succession of environmental dynamics is reconstructed from these two vital sections, which is broadly consistent with other loess records in the Dnieper Lowland and Lower Danube Basin, demonstrating similar climatic trends at Glacial–Interglacial time scales. Furthermore, our results have important implications for the chronostratigraphic representativeness of Beglitsa as a key regional loess section and for the reconstruction of the temporal and spatial evolution of Late Pleistocene climate in the Azov Sea region.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3