Holocene History of Río Tranquilo Glacier, Monte San Lorenzo (47°S), Central Patagonia

Author:

Sagredo Esteban A.,Reynhout Scott A.,Kaplan Michael R.,Aravena Juan C.,Araya Paola S.,Luckman Brian H.,Schwartz Roseanne,Schaefer Joerg M.

Abstract

The causes underlying Holocene glacier fluctuations remain elusive, despite decades of research efforts. Cosmogenic nuclide dating has allowed systematic study and thus improved knowledge of glacier-climate dynamics during this time frame, in part by filling in geographical gaps in both hemispheres. Here we present a new comprehensive Holocene moraine chronology from Mt. San Lorenzo (47°S) in central Patagonia, Southern Hemisphere. Twenty-four new 10Be ages, together with three published ages, indicate that the Río Tranquilo glacier approached its Holocene maximum position sometime, or possibly on multiple occasions, between 9,860 ± 180 and 6,730 ± 130 years. This event(s) was followed by a sequence of slightly smaller advances at 5,750 ± 220, 4,290 ± 100 (?), 3,490 ± 140, 1,440 ± 60, between 670 ± 20 and 430 ± 20, and at 390 ± 10 years ago. The Tranquilo record documents centennial to millennial-scale glacier advances throughout the Holocene, and is consistent with recent glacier chronologies from central and southern Patagonia. This pattern correlates well with that of multiple moraine-building events with slightly decreasing net extent, as is observed at other sites in the Southern Hemisphere (i.e., Patagonia, New Zealand and Antarctic Peninsula) throughout the early, middle and late Holocene. This is in stark contrast to the typical Holocene mountain glacier pattern in the Northern Hemisphere, as documented in the European Alps, Scandinavia and Canada, where small glaciers in the early-to-mid Holocene gave way to more-extensive glacier advances during the late Holocene, culminating in the Little Ice Age expansion. We posit that this past asymmetry between the Southern and Northern hemisphere glacier patterns is due to natural forcing that has been recently overwhelmed by anthropogenic greenhouse gas driven warming, which is causing interhemispherically synchronized glacier retreat unprecedented during the Holocene.

Funder

Fondo Nacional de Desarrollo Científico y Tecnológico

Agencia Nacional de Investigación y Desarrollo

National Science Foundation

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3