Impact of turbulence on magnetic alignment in sediments

Author:

Philippe Édouard G. H.,Valet Jean-Pierre,St-Onge Guillaume,Egli Ramon

Abstract

Rapidly deposited layers (RDL) such as turbidites or hyperpycnites are mostly studied for their sedimentological properties, but are carefully avoided in paleomagnetic studies due to the disturbances caused by such sudden and rapid sediment accumulation. Therefore, these layers can also be seen as potential indicators of sediment parameters susceptible of affecting the alignment of magnetic grains and ultimately the acquisition of the natural remanent magnetization (NRM). We have compiled 13 Holocene rapidly deposited layers from core MD99-2222 in the Saguenay Fjord, eastern Canada (St-Onge and al., 2004) with varying thicknesses (from 7.1 cm to 1,510 cm) and 4 Quaternary turbidites of different origins, to document the influence of sedimentary and magnetic parameters on natural remanent magnetization acquisition. We found a logarithmic relationship between rapidly deposited layers thickness on the one hand, and the amplitude of inclination changes and magnetic grain sizes on the other. Inclination and magnetic grain sizes are themselves correlated to each other by a logarithmic law. As there is no relationship between inclination deviation and stratigraphic depth, compaction alone cannot account for such large effects on inclination. Flocculation is grain size sensitive, but it is expected to affect mainly the natural remanent magnetization intensity, rather than its direction. Turbulence that prevails during the rapid deposition of sediments during such events is most likely the dominant factor.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3