Quantitative Analysis of Morphometric Data of Pre-modern Birds: Phylogenetic Versus Ecological Signal

Author:

Bell Alyssa,Marugán-Lobón Jesús,Navalón Guillermo,Nebreda Sergio M.,DiGuildo John,Chiappe Luis M.

Abstract

Birds are one of the most diverse clades of extant terrestrial vertebrates, a diversity that first arose during the Mesozoic as a multitude of lineages of pre-neornithine (stem) birds appeared but did not survive into the Cenozoic Era. Modern birds (Neornithes) inhabit an extensive array of ecologically distinct habitats and have specific and varied foraging strategies. Likewise, the morphological disparity among Mesozoic lineages appears to underscore a significant degree of ecological diversity, yet attempts to determine lineage-specific ecologies have mainly been limited to superficial narratives. In recent years, numerous studies have used various morphometric proxies to interpret the paleoecology of Mesozoic bird lineages, but largely without evaluating the interplay between ecological and phylogenetic signals. Moreover, most studies of this sort transform the original data into logarithms to control dimensionality, underestimating the biases induced upon such transformations. The goal of this study is to quantitatively address the ecomorphology of crown-group Neornithes using a dense sample of raw forelimb and hindlimb measurements, and to examine if such results can be used to infer the ecologies of Mesozoic bird lineages. To that end, scaling of limb measurements and ecological data from modern birds was assessed statistically using phylogenetic comparative methods, followed by the inclusion of fossil taxa. A strong relationship was recovered between humerus and hindlimb allometric scaling and phylogeny. Our results indicate that while some ecological classes of modern birds can be discriminated from each other, phylogenetic signature can overwhelm ecological signal in morphometric data, potentially limiting the inferences that can be made from ecomorphological studies. Furthermore, we found differential scaling of leg bones among Early Cretaceous enantiornithines and ornithuromorphs, a result hinting that habitat partitioning among different lineages could be a pervasive phenomenon in avian evolution.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference96 articles.

1. Geomorph: Anrpackage for the Collection and Analysis of Geometric Morphometric Shape Data;Adams;Methods Ecol. Evol.,2013

2. Flight Speeds Among Bird Species: Allometric and Phylogenetic Effects;Alerstam;Plos Biol.,2007

3. “A New Flightless Land Bird from the Cretaceous of Patagonia.” Natural History Museum Of Los Angeles County;Alvarenga;Sci. Ser.,1992

4. Morphometric Variation of the Hindlimb of Waders and its Evolutionary Implications;Barbosa;Ardeola,1993

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3