Advancing very short-term rainfall prediction with blended U-Net and partial differential approaches

Author:

Ha Ji-Hoon,Park Junsang

Abstract

Accurate and timely prediction of short-term rainfall is crucial for reducing the damages caused by heavy rainfall events. Therefore, various precipitation nowcasting models have been proposed. However, the performance of these models still remains limited. In particular, the current operational precipitation nowcasting method, which is based on radar echo tracking, such as the McGill Algorithm for Precipitation Nowcasting by Lagrangian Extrapolation (MAPLE), has a critical drawback when predicting newly developed or decayed precipitation fields. Recently proposed deep learning models, such as the U-Net convolutional neural network outperform the models based on radar echo tracking. However, these models are unsuitable for operational precipitation nowcasting due to their blurry predictions over longer lead times. To address these blurry effects and enhance the performance of U-Net-based rainfall prediction, we propose a blended model that combines a partial differential equation (PDE) model based on fluid dynamics with the U-Net model. The evaluation of the forecast skill, based on both qualitative and quantitative methods for 0–3-h lead times, demonstrates that the blended model provides less blurry and more accurate rainfall predictions compared with the U-Net and partial differential equation models. This indicates the potential to enhance the field of very short-term rainfall prediction. Additionally, we also evaluated the monthly-averaged forecast skills for different seasons, and confirmed the operational feasibility of the blended model, which contributes to the performance enhancement of operational nowcasting.

Funder

Korea Meteorological Administration

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference43 articles.

1. Machine learning for precipitation nowcasting from radar images AgrawalS. BarringtonL. BrombergC. BurgeJ. GazenC. HickeyJ. 2019

2. Optical flow models as an open benchmark for radar-based precipitation nowcasting (rainymotion v0.1);Ayzel;Geosci. Mod. Dev.,2019

3. RainNet v1.0: a convolutional neural network for radar-based precipitation nowcasting;Ayzel;Geosci. Mod. Dev.,2020

4. Precipitation nowcasting using deep neural network BakkayM. C. SerrurierM. BurdáV. K. DupuyR. Cabrera-GutiérrezN. C. ZamoM. 2022

5. An hourly assimilation-forecast cycle: the RUC;Benjamin;Mon. Wea. Rev.,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3