Fracture Network Localization Preceding Catastrophic Failure in Triaxial Compression Experiments on Rocks

Author:

McBeck Jessica,Ben-Zion Yehuda,Renard François

Abstract

We quantify the spatial distribution of fracture networks throughout six in situ X-ray tomography triaxial compression experiments on crystalline rocks at confining stresses of 5–35 MPa in order to quantify how fracture development controls the final macroscopic failure of the rock, a process analogous to those that control geohazards such as earthquakes and landslides. Tracking the proportion of the cumulative volume of fractures with volumes >90th percentile to the total fracture volume, v90/vtot indicates that the fracture networks tend to increase in localization toward these largest fractures for up to 80% of the applied differential stress. The evolution of this metric also matches the evolution of the Gini coefficient, which measures the deviation of a population from uniformity. These results are consistent with observations of localizing low magnitude seismicity before large earthquakes in southern California. In both this analysis and the present work, phases of delocalization interrupt the general increase in localization preceding catastrophic failure, indicating that delocalization does not necessarily indicate a reduction of seismic hazard. However, the proportion of the maximum fracture volume to the total fracture volume does not increase monotonically. Experiments with higher confining stress tend to experience greater localization. To further quantify localization, we compare the geometry of the largest fractures, with volumes >90th percentile, to the best fit plane through these fractures immediately preceding failure. The r2 scores and the mean distance of the fractures to the plane indicate greater localization in monzonite than in granite. The smaller mean mineral diameter and lower confining stress in the granite experiments may contribute to this result. Tracking these various metrics of localization reveals a close association between macroscopic yielding and the acceleration of fracture network localization. Near yielding, v90/vtot and the Gini coefficient increase while the mean distance to the final failure plane decreases. Macroscopic yielding thus occurs when the rate of fracture network localization increases.

Funder

Norges Forskningsråd

U.S. Department of Energy

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3