Advanced detection for faults in front of coal mine roadways using seismic scattered waves

Author:

Zhang Jun,Xiao Wenhao,Li Chunyang,Liu Shengdong

Abstract

An unsuspected fault in front of a roadway is a key hidden disaster-causing factor that can result in major accidents in coal mines; therefore, the accurate advanced detection of faults is important for the safe coal mining. However, existing seismic advanced detection methods are difficult to execute because of the narrow space limits of roadways. Therefore, on the basis of the generalized theory of scattered waves and the scenes of advanced detections in roadways, we construct a new and superior advanced detection method using scattered waves. In this method, a virtual equivalent survey line perpendicular to the roadway strike is established to reconstruct scattered wave records and a polarization filter function is built to dynamically and accurately extract different types of scattered waves in the target area. An analysis of numerical simulations indicates the following. 1) The true reflection position of a fault in front of a rock roadway is closely related to its dip, and the proposed method can accurately extract and image the scattered multiwaves generated at the true reflection position to identify the inclination of the fault, which can avoid the arc-shaped illusion problem caused by the false reflection signal. 2) Under the condition that the scattered waves at the breakpoint of a broken coal seam are significantly disturbed by the coal seam waveguide effect, the fault inclination of the coal roadway can be determined by the joint imaging and interpretation on the reflected channel wave of the hanging wall breakpoint and the scattered wave of the footwall breakpoint. A field study was performed to verify the effectiveness of the proposed method. The results indicate that this method can effectively identify the position and inclination of faults and provide an effective new means for the accurate detection of faults in front of coal mine roadways.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference32 articles.

1. Equivalent offsets and CRP gathers for pre-stack migration;Bancroft;64th. Ann. Intern. Mtg. Soc. Exp. Geophys. Expand. Abstr.,1994

2. The equivalent offset method of prestack time migration;Bancroft;Geophysics,1998

3. Rayleigh-to-shear wave conversion at the tunnel face-From 3D-FD modeling to ahead-of-drill exploration;Bohlen;Geophysics,2007

4. Research progress and development direction on advanced detection in mine roadway working face using geophysical methods;Chen;J. Appl. Geophys.,2014

5. Two-dimensional pre-stack reverse time imaging based on tunnel space;Cheng;J. Appl. Geophys.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3