Influencing factors, deformation mechanism and failure process prediction for reservoir rock landslides: Tanjiahe landslide, three gorges reservoir area

Author:

Chen Yushan,Zhang Yeming,Wang Li,Wang Shimei,Tian Dongfang,Zhang Lun

Abstract

Compared with terrestrial rock landslides, reservoir rock landslides are also affected by the rise and fall of the reservoir water level, and these landslides are more threatening. High-speed debris flows may form once they lose stability, and once they enter the water a surge is formed. This endangers the safe operation of reservoirs. This study explored the deformation characteristics and influencing factors of the Tanjiahe reservoir rock landslide in the Three Gorges Reservoir using field investigations, GPS surface displacement monitoring, and groundwater level monitoring. The discrete element system MatDEM was used to simulate failure motion, and predict the hazard area affected by the Tanjiahe landslide. The results show that within the reservoir water variation section (145–175 m), the Tanjiahe landslide mass was composed of surface soil (156–175 m) with low permeability and deep cataclastic rock (145–156 m) with high permeability. Due to the difference in permeability between the deep and surface layers, the response of landslide deformation to water level rise is not obvious. The high-level (175 m) operation of the reservoir and the decline in the reservoir water level (175–145 m) are key factors affecting the landslide deformation. Rainfall had a positive effect on landslide deformation. Under their combined action, the stability of the front gentle anti-sliding section of the landslide decreases, and the displacement of the middle and rear steeper sliding section increases under the driving force, which may lead to slope failure. The simulation results show that the upper part of the Tanjiahe landslide slides first and pushes the lower part to move, which is a typical of thrust load-caused failure. The speed of the sliding mass has three stages: rapid rise, rapid decline, and slow decline. The higher the slope angle, the higher the acceleration of the sliding mass in the direction parallel to the slope surface, the higher the speed peak value and the faster the sliding mass speed reaches the peak value. During the failure process, energy is transferred between sliding mass through collisions. Landslides can easily lead to debris flow. The maximum height of the first wave generated when the debris flow entered the water is 5.95 m, and the wave height that propagated to the opposite bank is 3.09 m. The landslide-induced waves propagated along the reservoir area for 30 km.

Funder

National Natural Science Foundation of China

China Postdoctoral Science Foundation

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3