Multiphase dolomitization mechanisms of the Cambrian upper Changping Formation, North China Platform, China

Author:

Bai Ying,Zhao Zhenyu,Zhao Zhe,Gao Jianrong

Abstract

The Cambrian dolomite reservoirs of the North China Platform offer good exploration prospects, but their occurrence and the impacts of dolomitization on reservoir quality are not yet clearly understood. The study herein assesses outcrop samples in the Cambrian upper Changping Formation, Dingjiatan area, and highlights the important role of multiphase dolomitization in the formation of paleo-reservoirs of acceptable porosity, where oil pools and fields may be discovered. A combination of petrology, fluid inclusion microthermometry, isotopes, and trace element compositions has been used to explain multiphase dolomitization mechanisms and their impacts on dolomite reservoirs. Five types of dolomites are identified through outcrop observation, thin section identification via transmitted light, and cathodoluminescence. The following geochemical analyses reveal various dolomitization mechanisms. In the (pene) contemporaneous stage, microbial dolomite is commonly related to microbial metabolic activities with significant carbon isotopic depletion compared to the Cambrian seawater values. With the influence of microbial dolomitization, dolomicrite corresponds to the sabkha dolomitization mode in a low-salinity seawater environment and early-stage dolomitization. The structureless dolomite (ssD) in the early highstand systems tract (EHST), characterized by elevated 87Sr/88Sr ratios and low oxygen isotopic values, forms from stratum brine water in the shallow-middle burial stage rather than in the (pene) contemporaneous stage. In contrast, ssD in the late highstand systems tract (LHST) undergoes (pene) contemporaneous dolomitization at salinities between 6% and 28% before later pore water transformation, with the participation of atmospheric freshwater through faults and unconformities exhibiting the lowest inclusion temperature and salinity values. The medium to coarse crystalline dolomite (MCD) in the LHST and the saddle dolomite (SD) in the EHST with low REE values are atypical hydrothermal dolomites caused by a combined superposition of middle-deep burial hydrothermal fluids at temperatures >150°C and stratigraphic brines. The MCD is also influenced by terrigenous water characterized by relatively low Eu anomaly values. Finally, the mechanisms of porosity increase are investigated, and it is concluded that the pore increase caused by the (pene) contemporaneous reflux interaction and the later pore retention both lead to better ssD reservoirs in the LHST than in the EHST.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3