Effect of rheological heterogeneities on the lithospheric deformation of the Tibetan Plateau and neighbouring regions

Author:

Sun Yujun,Li Hailong,Fan Taoyuan,Li Bing

Abstract

The Tibetan Plateau, induced by the India-Eurasian collision, has the highest average altitude in the world. During its uplift vertically, the Tibetan Plateau has been considered to expand laterally. However, there are several strong and almost non-deformable cratons on its periphery, such as the Tarim, North China craton, and South China block. The present landform features show that these cratons limit the expansion of the Tibetan Plateau. However, there is still much controversy over whether the deformation can be transmitted to periphery orogens or reactivate ancient orogens in the cratons. This study used numerical models to investigate the effect of rheological heterogeneities on the lithospheric deformation of the Tibetan Plateau and its neighbouring regions. The results show that the lateral heterogeneities of the lithosphere have an important influence on the deformation or strain partitioning. Generally, during the lateral expansion of the Tibetan Plateau, its peripheral cratons can transmit the deformation or high strain to neighbouring weak orogens. This case can be used to understand the Tian Shan orogen, which was reactivated by the India-Eurasian collision. However, when the orogens inside the cratons have high lithospheric strength, high strain is difficult to distribute on them and the expanding Tibetan Plateau is constrained by its peripheral cratons. These results can be used to explain the ancient orogens that are not strongly deformed, such as the Jiangnan orogen in the South China block. Because these orogens formed at the same time as the cratons and have relatively high lithospheric strength. In addition, the large lithospheric thickness difference and low crustal rheological contrast favor high strain rates localized on the lithosphere of the ancient orogen in the craton, such as the Trans-North China orogen in the North China craton.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3