Application of a multi-layer feedforward neural network to predict fracture density in shale oil, Junggar Basin, China

Author:

Chen Gang,Qi Hongyan,Yu Jianglong,Li Wei,Xian Chenggang,Lu Minghui,Song Yong,Wu Junjun

Abstract

Fengcheng Formation in the Mabei Slope of Junggar Basin has low porosity and permeability. However, fractures are well developed, representing an effective storage space for shale oil. Core and experimental data show that the shale oil reservoir of Fengcheng Formation positively correlates with oil content and fractures. And the fracture density has a good quantitatively positive correlation with crude oil production from the production data. Fengcheng Formation has been significantly enriched and accumulated with shale oil due to fractures serving as reservoirs and seepage channels. Therefore, quantitative prediction of fractures is the key to finding high production areas of shale oil in the Fengcheng Formation. The purpose of this study is to extract the seismic attributes that are sensitive to shale oil reservoir fractures. These attributes include curvature, deep learning fracture detection, maximum likelihood, eigenvalue coherence, and variance cube. Furthermore, a seismic multi-attribute fracture density prediction model is trained at the well point using a feedforward neural network method, and the spatial distribution of fracture density is predicted. The results show that the predicted fracture density is consistent with the formation micro imaging logs in the area. Simultaneously, combined with the understanding of the quantitative relationship between fracture density and shale oil production, quantitative prediction results of fracture density could provide the basis for determining the distribution and optimal location of high-quality shale oil wells in the study area. This study will serve as a benchmark for identifying fractures in shale oil reservoirs worldwide.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference19 articles.

1. Numerical simulation and modeling of a poroelastic media for detection and discrimination of geo-fluids using finite difference method;Adnan Ahmad;Alexandria Eng. J.,2022

2. A rock physical approach to understand geo-mechanics of cracked porous media having three fluid phases;Ahmad;Geomechanics Eng.,2020

3. Prediction of a fracture zone using an extreme learning machine;Chen;Geophys. Prospect. petroleum,2021

4. Seismic Attributes for Prospect Identification and Reservoir Characterization

5. Methods to compute fault images, extract fault surfaces, and estimate fault throws from 3D seismic images;Hale;Geophysics,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3