Amplification Behaviour of Compressional Waves in Unconsolidated Sediments

Author:

van Ginkel Janneke,Ruigrok Elmer,Wentinck Rick,Herber Rien

Abstract

Similar to horizontal earthquake motions, vertical motions are amplified depedent on the local site conditions which can be critical for the safety of certain structures. Production of natural gas in Groningen, the Netherlands, results in reservoir compaction causing low magnitude, shallow earthquakes which are recorded with a borehole seismic network. These recordings form an excellent data set to understand how shallow unconsolidated subsurface geology influences the amplification behaviour of compressional waves (P-waves). First, we present borehole and single-station techniques (amplification factors, empirical transfer functions (ETF) and V/H spectral ratio implementations) to quantify vertical amplification. We show that vertical-wave incidence is a reasonable assumption. All techniques are capable of emphasising the sites with strong amplification of vertical ground motion during an earthquake. Subsequently, we compare ETF with single-station methods with the aim to develop proxies for vertical site-response using spectral ratios. In a second step, we link vertical site-response with shallow subsurface conditions, like the P-wave velocity and peat content. To better understand the amplification mechanisms, we analytically simulate P-wave propagation. In the simulations, we compute synthetic transfer functions using realistic subsurface conditions and make a comparison with the ETF. The simulations support the hypothesis that thin layers of shallow gas, originating from the Holocene peat, result in wave amplification. We observe strong vertical site-response in particular in the eastern part of Groningen, with industrial facilities and pipeline infrastructure in the region. Here, if high vertical amplifications are persistent at large earthquake magnitudes, appreciable levels of vertical loading may be expected. This study demonstrates that vertical motions should be assessed separately from horizontal motions, given that the amplification behaviour of P-waves is affected by distinctive mechanisms.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference61 articles.

1. Prediction of Vertical Response Spectra in Europe;Ambraseys;Earthquake Engng. Struct. Dyn.,1996

2. Mechanics of Deformation and Acoustic Propagation in Porous media;Biot;J. Appl. Phys.,1962

3. V4 Ground-Motion Model (GMM) for Response Spectral Accelerations, Peak Ground Velocity, and Significant Durations in the Groningen Field BommerJ. DostB. EdwardsB. KruiverP. MeijersP. Rodriguez-MarekA.

4. A Model for Vertical-To-Horizontal Response Spectral Ratios for Europe and the Middle East;Bommer;Bull. Seismological Soc. America,2011

5. Framework for a Ground-Motion Model for Induced Seismic hazard and Risk Analysis in the Groningen Gas Field, the Netherlands;Bommer;Earthquake Spectra

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3