Leaf Waxes and Hemicelluloses in Topsoils Reflect the δ2H and δ18O Isotopic Composition of Precipitation in Mongolia

Author:

Struck Julian,Bliedtner Marcel,Strobel Paul,Bittner Lucas,Bazarradnaa Enkhtuya,Andreeva Darima,Zech Wolfgang,Glaser Bruno,Zech Michael,Zech Roland

Abstract

Compound-specific hydrogen and oxygen isotope analyzes on leaf wax-derived n-alkanes (δ2Hn–alkane) and the hemicellulose-derived sugar arabinose (δ18Oara) are valuable, innovative tools for paleohydrological reconstructions. Previous calibration studies have revealed that δ2Hn–alkane and δ18Oara reflect the isotopic composition of precipitation, but – depending on the region – may be strongly modulated by evapotranspirative enrichment. Since no calibration studies exist for semi-arid and arid Mongolia so far, we have analyzed δ2Hn–alkane and δ18Oara in topsoils collected along a transect through Mongolia, and we compared these values with the isotopic composition of precipitation (δ2Hp–WM and δ18Op–WM, modeled data) and various climate parameters. δ2Hn–alkane and δ18Oara are more positive in the arid south-eastern part of our transect, which reflects the fact that also the precipitation is more enriched in 2H and 18O along this part of the transect. The apparent fractionation εapp, i.e., the isotopic difference between precipitation and the investigated compounds, shows no strong correlation with climate along the transect (ε2H n–C29/p = −129 ± 14‰, ε2H n–C31/p = −146 ± 14‰, and ε18O ara/p = +44 ± 2‰). Our results suggest that δ2Hn–alkane and δ18Oara in topsoils from Mongolia reflect the isotopic composition of precipitation and are not strongly modulated by climate. Correlation with the isotopic composition of precipitation has root-mean-square errors of 13.4‰ for δ2Hn–C29, 12.6 for δ2Hn–C31, and 2.2‰ for δ18Oara, so our findings corroborate the great potential of compound-specific δ2Hn–alkane and δ18Oara analyzes for paleohydrological research in Mongolia.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3