Hydrothermal Vent Complexes Control Seepage and Hydrocarbon Release on the Overriding Plate of the Tyrrhenian-Ionian Subduction System (Paola Basin)

Author:

Rovere Marzia,Mercorella Alessandra,Gamberi Fabiano,Zgur Fabrizio

Abstract

Active fluid seeps have been described in a wide range of geological environments and geodynamic contexts, which include continental shelves of non-volcanic passive margins and accretionary wedges. Fluids seeping in hybrid volcanic-sedimentary basins, characterized by the presence of magmatic intrusive complexes, have always received less attention. We detected and imaged dozens of distinct gas flares, as high as 700 m, on the continental slope of the Paola Basin in the southeastern Tyrrhenian Sea, at 550–850 m water depth. The sedimentary basin is surrounded by Pleistocene active and inactive volcanoes and volcanic-intrusive complexes, which formed in the back-arc basin of the Calabrian subduction zone, in response to subduction-induced mantle flow. Gas flares develop above pockmarks, craters and mud flows that form over and along the scarps of mound structures and correspond to seismic zones of free gas accumulation in the sub-seafloor. Here, methane-derived siderite shows enrichment in δ13C and δ18O isotopes likely related to methanogenesis and intermittent venting of deep-sourced CO2. Multichannel seismic reflection data showed that the gas flares develop in correspondence of doming and diapirism apparently originating from the top of the Messinian evaporites and nearby magmatic sills, that are present in the lower part of the Plio-Quaternary succession. These diapiric structures can be related to seafloor hydrothermal vent complexes fed by the igneous intrusions. Our data suggest that the vent complexes acted as fluid migration pathways and gas conduits, which at times are bounded by deep-rooted normal faults, leading to post-explosive near-surface microbial activity and seep carbonate formation. Fluids being mobilised by magmatism in the study area include: hydrocarbons and hydrothermal fluids generated at depth, interstitial water expelled during formation of polygonal faults. The close spatial correlation between seafloor seep manifestations, fluid migration pathways in the sub-surface involving part of the Messinian units and igneous features indicates that magmatic activity has been the main driver of fluid flow and can have a long-term effect in the southern Tyrrhenian Sea.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3