Decision-making fusion of InSAR technology and offset tracking to study the deformation of large gradients in mining areas-Xuemiaotan mine as an example

Author:

Ma Jianquan,Yang Juncheng,Zhu Zhanrong,Cao Husheng,Li Shibo,Du Xiaolan

Abstract

The multi-level disturbance of underground and surface caused by coal mining activities intensifies the deterioration of the ecological environment in the mining area. Among them, the uneven settlement caused by coal mining is the most intuitive manifestation of surface environmental damage. The uneven settlement in the mining area has the characteristics of large settlement magnitude and severe deformation. Therefore, based on 15 Sentinel-1A image data, this paper uses three methods: SBAS InSAR, continuous D-InSAR and offset tracking technology to monitor the surface deformation of the mining area. The results show that the continuous D-InSAR technology SBAS-InSAR technology is applied to the small deformation in the edge area of the subsidence basin. The mining area with low gradient subsidence of SBAS-InSAR can obtain better performance than continuous D-InSAR technology. The offset tracking technique is used to monitor the large gradient deformation in the center of the subsidence basin. Therefore, this paper proposes to expand the quantitative analysis through the spatial coherence threshold and the accuracy and successful image elements of the interference fringe displacement. Combine the advantages of the three methods and overcome the shortcomings of each method, fuse the deformation information of the three methods, and obtain the deformation law of the whole surface subsidence. The results show that the mean absolute error (MAE1-1) of continuity D-InSAR is 0.92 m, the mean absolute error (MAE2-1) of SBAS-InSAR is 0.94 m, and the mean absolute error (MAE3-1) of Offset-tracking is 0.25 m. The results of this fusion method are in good agreement with the measured data, and the mean absolute error (MAE4-1) of vertical displacement is 7 cm. Therefore, the fusion method has advantages over individual methods and provides a new idea in monitoring the large gradient deformation of coal mining subsidence in mining areas.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3