Sediment Infill of Tropical Floodplain Lakes: Rates, Controls, and Implications for Ecosystem Services

Author:

Lo Edward L.,Yeager Kevin M.,Bergier Ivan,Domingos-Luz Leandro,Silva Aguinaldo,McGlue Michael M.

Abstract

Shallow lakes in tropical floodplains provide significant ecosystem services that can be altered by natural and anthropogenic forces. Despite their importance, little is known about the infill patterns and timescales and the magnitude of these changes in tropical floodplain lakes. Here, we present a global meta-analysis of sediment core-derived accumulation rate data for shallow floodplain lakes in tropical lowlands to quantify the timescales of basin infill. Environmental variables (e.g., sediment accumulation rates, bathymetry, surface area) were compiled from the literature or derived from remote sensing imagery, resulting in a database (n = 76 lakes) that includes various lake morphologies. Our results show an exponential increase in sediment accumulation rates in many of these lakes over the past 50 years, which we interpret as a response to growing human populations and deforestation, particularly in topographically steep watersheds with pronounced seasonal rainfall. Over centennial periods, tropical floodplain lakes accumulate sediment faster than many other extratropical lakes. The dataset suggests that complete infill of some tropical floodplain lakes will occur in as little as a few centuries. Our findings also reveal the critical environmental and human factors that influence sediment accumulation patterns and affect ecosystem services in shallow tropical floodplain lakes. These findings have important implications for water and sediment management in low latitude watersheds, many of which are located in densely populated and/or developing nations.

Funder

Conselho Nacional de Desenvolvimento Científico e Tecnológico

Fundação de Apoio ao Desenvolvimento do Ensino, Ciência e Tecnologia do Estado de Mato Grosso do Sul

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3