Interpretable machine learning model for shear wave estimation in a carbonate reservoir using LightGBM and SHAP: a case study in the Amu Darya right bank

Author:

Zhang Tianze,Chai Hui,Wang Hongjun,Guo Tongcui,Zhang Liangjie,Zhang Wenqi

Abstract

The shear wave velocity (Vs) is significant for quantitative seismic interpretation. Although numerous studies have proved the effectiveness of the machine learning method in estimating the Vs using well-logging parameters, the real-world application is still hindered because of the black-box nature of machine learning models. With the rapid development of the interpretable machine learning (ML) technique, the drawback of ML can be overcome by various interpretation methods. This study applies the Light Gradient Boosting Machine (LightGBM) to predict the Vs of a carbonate reservoir and uses the Shapley Additive Explanations (SHAP) to interpret the model. The application of ML in Vs estimation normally involves using conventional well-log data that are highly correlated with Vs to train the model. To expand the model’s applicability in wells that lack essential logs, such as the density and neutron logs, we introduce three geologically important features, temperature, pressure, and formation, into the model. The LightGBM model is tuned by the automatic hyperparameter optimization framework; the result is compared with the Xu-Payne rock physics model and four machine learning models tuned with the same process. The results show that the LightGBM model can fit the training data and provide accurate predictions in the test well. The model outperforms the rock physics model and other ML models in both accuracy and training time. The SHAP analysis provides a detailed explanation of the contribution of each input variable to the model and demonstrates the variation of feature contribution in different reservoir conditions. Moreover, the validity of the LightGBM model is further proved by the consistency of the deduced information from feature dependency with the geological understanding of the carbonate formation. The study demonstrates that the newly added features can effectively improve model performance, and the importance of the input feature is not necessarily related to its correlation with Vs

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference60 articles.

1. Predicting dynamic shear wave slowness from well logs using machine learning methods in the Mishrif Reservoir, Iraq;Alameedy;J. Appl. Geophys.,2022

2. Optuna: A next-generation hyperparameter optimization framework;Akiba,2005

3. Permutation importance: a corrected feature importance measure;Altmann;Bioinformatics,2010

4. Machine learning technique for the prediction of shear wave velocity using petrophysical logs;Anemangely;J. Pet. Sci. Eng.,2019

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3