Performance Assessment of the Cloud for Prototypical Instant Computing Approaches in Geoscientific Hazard Simulations

Author:

Behrens Jörn,Schulz Arne,Simon Konrad

Abstract

Computing forecasts of hazards, such as tsunamis, requires fast reaction times and high precision, which in turn demands for large computing facilities that are needed only in rare occasions. Cloud computing environments allow to configure largely scalable on-demand computing environments. In this study, we tested two of the major cloud computing environments for parallel scalability for relevant prototypical applications. These applications solve stationary and non-stationary partial differential equations by means of finite differences and finite elements. These test cases demonstrate the capacity of cloud computing environments to provide scalable computing power for typical tasks in geophysical applications. As a proof-of-concept example of an instant computing application for geohazards, we propose a workflow and prototypical implementation for tsunami forecasting in the cloud. We demonstrate that minimal on-site computing resources are necessary for such a forecasting environment. We conclude by outlining the additional steps necessary to implement an operational tsunami forecasting cloud service, considering availability and cost.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference33 articles.

1. The Tsunami Induced by the 2003 Zemmouri Earthquake (Mw= 6.9, Algeria): Modelling and Results;Alasset;Geophys. J. Int.,2006

2. Boto 3 Docs 1.17.53 Documentation2021

3. The deal.II Library, Version 9.2;Arndt;J. Numer. Maths.,2020

4. Assessment, Strategy and Risk Reduction for Tsunamis in Europe

5. Find platform, fundação da faculdade de ciências da universidade de lisboa2017

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3