Extraction of Organic Compounds From Lacustrine Oil-Prone Shales and the Effect on Nanopore

Author:

Cao Huairen,Zhang Deping,Wang Xiaoyu,Fu Deliang

Abstract

Lacustrine oil-prone shale at the oil-generation stage develops a large number of nanopores; however, the influence of fluid–shale interactions on the nanopores of lacustrine shale is poorly understood. A suite of mature lacustrine shales from the Songliao Basin Qingshankou Formation was performed on sequential organic solvent (petroleum ether and mixture of dichloromethane and methanol) extractions, and nitrogen and carbon dioxide adsorptions, Rock-Eval pyrolysis and field emission scanning electron microscopes (FE-SEM) observation. The sequential extractions show a decrease in total organic matter (TOC) and in the exacted organic matter content of shale, but an increase in the specific area (SBET) and pore volume of the extracted residues. Before and after extractions, the relationships between the extracted amount of OM and SBET, pore volume and their cumulative increments reveal OM as a main factor affecting the development of nanopores in these shales. The reasons are 1) SBET and mesopores are mainly blocked by EOMs in the initial samples, 2) the cumulative increases of SBET and mesopores are dominantly controlled by the extracted amount of hydrocarbons during petroleum ether extraction, and 3) both hydrocarbons and NSOs (resins and asphaltenes) have an influence on the cumulative increases of SBET and mesopores, and kerogen exposed more open porous-organic mesopores after the EOMs in the extracted shales. Here, further work concludes that oils adsorbed on pore surfaces are dominantly distributed on nanopores less than 10 nm, and free oils occur when the threshold of the average pore width in studied shales is over 11.7 nm.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3