Model structure and ensemble size: Implications for predictions of groundwater age

Author:

Kitlasten Wesley,Moore Catherine R.,Hemmings Brioch

Abstract

This paper examines the influence of simplified vertical discretization using 50- to four- layer models and ensemble size on history matching and predictions of groundwater age for a national scale model of New Zealand (approximately 265,000 km2). A reproducible workflow using a combination of opensource tools and custom python scripts is used to generate three models that use the same model domain and underlying data with only the vertical discretization changing between the models. The iterative ensemble smoother approach is used for history matching each model to the same synthetic dataset. The results show that: 1) the ensemble based mean objective function is not a good indicator of model predictive ability, 2) predictive failure from model structural errors in the simplified models are compounded by history matching, especially when small (<100 member) ensembles are used, 3) predictive failure rates increase with iteration, 4) predictive failure rates for the simplified model reach 30–65% using 50-member ensembles, but stabilize at relatively low values (<10%) using the 300 member ensemble, 5) small (50 member) ensembles contribute to predictive failure of 22–30% after six iterations even in structurally “perfect” models, 6) correlation-based localization methods can help reduce prediction failure associated with small ensembles by up to 45%, 7) the deleterious effects of model simplification and ensemble size are problem specific. Systematic investigation of these issues is an important part of the model design, and this investigation process benefits greatly from a scripted, reproducible workflow using flexible, opensource tools.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3