Micropore Structure and Fractal Characteristics of Clays Due to Freeze-Thaw and Compression Based on Mercury Intrusion Porosimetry

Author:

Wang Shengfu,Lv Liang,Xue Kaixi,Zhang Dongjie,Li Mingdong,Li Dongwei,Yuan Chang

Abstract

The artificial ground freezing method has been widely used in shield end reinforcement and connecting channel reinforcement of urban subway tunnel in water-rich soft soil. Accurate quantification of micropore change and redistribution due to freeze-thaw is important to understand frost heave and thaw settlement of soft soils including mucky clay and silty clay. This paper presents Mercury Intrusion Porosimetry (MIP) data for mucky clay and silty clay specimens before and after freeze-thaw and compression. MIP tests were conducted on the soil samples of undisturbed soil, frozen-thawed soil, compressed soil and compressed frozen-thawed soil. The pores of clays were divided into five groups according to the diameter, including 1) macro pore, 2) medium pore, 3) small pore, 4) micro pore, 5) ultramicro pore. Micro pores and ultramicro pores account for more than 80% of clays’ total pore volume and pore surface area. The pore distribution characteristics of mucky clay and silty clay were studied, and the pore volume and pore surface area distributions’ capacity dimension was estimated. The particle contact, pore changes of clays due to freeze-thaw and compression were analyzed quantitatively. Total pore volume and pore surface area of clays increased due to freeze-thaw, and decreased due to compression correspondingly. The distribution of clays’ pore volume and pore surface area have statistical self similarity, and it is effective to quantify the microstructure changes of clays due to freeze-thaw and compression by estimating capacity dimension, which can provide a new way to reveal the internal micro-pore change of clays due to freeze-thaw and compression quantitatively.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3