Modeling the effects of present-day irrigation on temperature extremes over China

Author:

Li Xiao,Li Xing,Hua Wenjian,Ma Hedi,Zhou Juan,Pang Xueqi

Abstract

Irrigation activities have been recognized as one of the most potentially sustainable land management practices to tackle climate change. In this study, we investigated the impacts of present-day irrigation activities on regional temperature extremes changes in China using the state-of-the-art regional climate model RegCM-4.8.2, through two sets of long-term numerical experiments (i.e., with and without irrigation). The key findings are as follows. Firstly, by comparing the observations, RegCM4 has a good ability to reproduce both the spatial distribution and the volume of irrigation for provincial irrigation activities in China. In this context, by comparing the results of numerical experiments, we found that irrigation led to significant reductions (slightly changes) in the extreme indices associated with the warm (cold) tails of the maximum and minimum temperatures distributions, e.g., hot days, tropical nights (cold nights, frost days), particularly in the regions with intense irrigation (e.g., the North China Plain). Furthermore, these extreme indices were dominated by irrigation-induced shifts in mean temperatures, but the impacts of changes in temperature variability on extreme hot events were also non-negligible for the strongly irrigated regions. In addition, through attributing irrigation-induced changes in mean state temperatures, we revealed that the irrigation-induced repartitioning of the surface turbulent heat fluxes (i.e., sensible and latent heat) dominated the variations of temperatures and the associated extremes. However, region-specific land-atmosphere coupling features also led to differences in the irrigation-induced responses of surface energy components. We highlight the possible effects and mechanisms of irrigation on multiple types of extreme temperature indices, particularly the extreme hot events, which provide scientific clues for mitigating and adapting regional climate change.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3