Analysis of ecological prevention and control technology for expansive soil slope

Author:

Tao Wenbing,Wen Yingwen,Bian Xia,Ren Zhilin,Xu Long,Wang Fei,Zheng Hu

Abstract

For the expansion soil slope in the JiangHuai area before the disposal of the neglect of expansion of the weak defects and slope disposal after the poor long-term stability of the current situation. This study investigates the ability of ecological slope protection technology to cope with the destabilizing geohazard of expansive soil slopes. Analyzing the collapse reasons of weak expansive soil slopes in the JiangHuai region based on the reinforcement project of expansive soil slopes along highways in the JiangHuai region, combined with actual engineering research, a “storage-resistance” water regulation ecological prevention and control technology is proposed. The feasibility and sustainability of the ecological slope protection technology is discussed in terms of its principles and influencing factors, and the protection effect is verified by combining numerical simulation and field test methods. Research findings suggest that the “storage-resistance” technology effectively prevents rainwater infiltration, particularly under light rain conditions, with continuous blocking capability. Under rainstorm conditions, it can prevent infiltration for about 4 h, significantly enhancing slope stability. Slope rate variations show no significant impact on reinforced slope stability, with maximum deformation occurring at the slope’s foot after rainfall. Reinforcement plans should prioritize strengthening support at the slope’s base. Proper selection and optimization of technical parameters can lead to more economical and sustainable solutions while extending protection time. Field trials confirm the suitability of the “storage and blocking” water regulation ecological control technology for the JiangHuai region, particularly where light rain prevails. These findings suggest that ecological control techniques for expansive soil slopes can effectively regulate slope moisture changes and reduce the geohazard risk of expansive soil slope instability.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3