Experimental Simulation of Burial Diagenesis and Subsequent 2D-3D Characterization of Sandstone Reservoir Quality

Author:

Charlaftis Dimitrios,Dobson Katherine J.,Jones Stuart J.,Lakshtanov Dmitry,Crouch Jonathan,Cook Jennie

Abstract

Characterization of deeply buried sandstones and their reservoir quality is of paramount importance for exploring, developing, and subsurface storage of energy resources. High reservoir quality in deeply buried sandstones is commonly correlated with the occurrence of grain coatings that inhibit quartz cementation. The development of reliable models that can predict reservoir quality relies on incorporating quantitative understanding of these diagenetic processes. Hydrothermal experiments simulating burial diagenesis were integrated with multi-scale X-ray tomography to quantify the 3-dimensional evolution of grain coating volume and porosity with increasing temperature; while microscopic and automated quantitative mineralogy analysis were used to track the associated mineralogical alterations. To simulate reservoir evolution, sandstone samples from the Lower Jurassic Cook Formation (Oseberg Field, 30/6-17R, Norway) were exposed to a silica supersaturated Na2CO3 (0.1 M) solution for up to 360 h at temperatures of 100–250°C. The experimental results show the main porosity and permeability reduction window is associated with pore-filling kaolinite, and lies between 150 and 200°C, above which little change occurs. Volumetric increases in grain coating start to occur at ∼150°C through precipitation of authigenic chlorite, and continue to 250°C, irrespective of the experimental duration. Together with preexisting siderite coatings, the newly precipitated chlorite prevents the loss of reservoir quality by inhibiting quartz overgrowth development. Pore flow simulations based on the observed temperature-dependent 3-dimensional pore networks allow us to characterize pore-throat and permeability evolution and gain quantitative understanding of the impact of diagenetic overprinting on deeply buried sandstone reservoirs.

Funder

Durham University

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3