Correlation Analysis of Influencing Factors and the Monthly Displacement Increment of a Hydrodynamic Landslide Using a Pseudo-Maximum-Likelihood-Estimation-Mixed-Copula Approach

Author:

Wang Rubin,Zhang Kun,Qi Jian,Xu Weiya,Wang Huanling,Huang Haifeng

Abstract

Heavy rainfall and changes in the water levels of reservoirs directly affect the degree of landslide disasters in major hydropower project reservoir areas. Correlation analyses of rainfall- and water-level fluctuations with landslide displacement changes can provide a scientific basis for the prevention and early warning of landslide disasters in reservoir areas. Because of the shortcomings of the traditional correlation analysis based on linear assumptions, this study proposed the use of a pseudo-maximum-likelihood-estimation-mixed-Copula (MLE-M-Copula) method instead of linear assumptions. We used the Bazimen landslide in the Three Gorges Reservoir Area as a case study to carry out the correlation analysis of the rainfall, water-level fluctuations, and landslide displacement. First, we selected several appropriate influencing factors to construct four candidate Copula models and estimated the parameters using the pseudo-MLE method. After the goodness-of-fit test, we selected the M-Copula model as the optimal model and used this model to study correlations between the monthly displacement increment of the landslide and influencing factors. We then established the joint distribution functions of these correlations. We computed and analyzed the overall and tail correlations between the displacement increment and the influencing factors, and we constructed the conditional probability distribution of the monthly displacement increment for different given conditions. The results showed that the pseudo-MLE-M-Copula method effectively quantified the correlation between the rainfall, reservoir-level fluctuations, and landslide displacement changes, and we obtained the return periods and value at risk of the influencing factors of the Bazimen landslide under different rainfall conditions and reservoir-level changes. Furthermore, the tail correlations between the monthly displacement increment of the landslide and the rainfall- and reservoir-level changes were higher than the overall correlations.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3