C20-C21-C23 tricyclic terpanes abundance patterns: Origin and application to depositional environment identification

Author:

Wang Aiguo,Li Chunyu,Li Long,Pu Renhai,Yang Zeguang,Zhu Nan,Guo Kai

Abstract

Reconstruction of paleo-depositional environments in a sedimentary basin is often obstructed by the absence of typical environmental indicators in sedimentary rocks. Here, we propose a biomarker method using C20-C21-C23 tricyclic terpanes (TTs) as a tracer, which is simple in analysis but robust to provide reliable and detailed environmental information. Based on the analysis of 271 C20-C21-C23TT data from 32 basins in 18 countries, we observed a relationship between C20-C21-C23TT abundance patterns and depositional environments. This relationship was attributed to the control of depositional environments on the input proportions of plankton and terrigenous plants, which act as two end-member precursors for the TTs in a depositional system. The various mixing proportions between these two end-members result in different C20-C21-C23TT abundance patterns associated with different depositional environments, e.g., C20>C21>C23TT in river-lake transitional, C20<C21<C23TT in marine or saline lacustrine environments, C20<C21>C23TT in freshwater lacustrine and C20>C21<C23TT in marine-continental transitional environments. In addition, the C23/C21TT ratio increases with elevated salinity of depositional water, and the C21/C20TT ratio increases with increasing water depths. Based on these observations, a discrimination diagram using C23/C21TT vs. C21/C20TT was developed for environmental identification. The validity of this C20-C21-C23TT biomarker method is well demonstrated by the rock samples with typical environmental indicators. This method is applicable in a broad spectrum of rocks and in maturities up to 2.4%Ro. Its strength was shown by a case study of a complex depositional system in the East China Sea Basin, which has been strongly affected by eustasy.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3