Gas oversaturation in deep coals and its implications for coal bed methane development: A case study in Linxing Block, Ordos Basin, China

Author:

Kang Yongshang,Huangfu Yuhui,Zhang Bing,He Zhiping,Jiang Shanyu,Ma Yuan Zee

Abstract

Three coal bed methane (CBM) wells penetrating to coal seams 8+9# (Permian Taiyuan Formation), in deep coals (depth>1,500 m), show very differential production performance in Linxing Block, eastern margin of the Ordos Basin in China. The mechanism for the performance differentiation is analyzed through studies on coal permeability and gas saturation in deep coals, and specifically, the comparison of coal reservoir characteristics in the three wells. The mechanism for gas oversaturation is then discussed based on data from Linxing Block and spot but important exploration results relevant to deep coals in the Junggar Basin. This study demonstrates that: (1) Permeability values of coal seams 8+9# in deep coals are probably in the order of 10−2mD from diverse sources including results of experimental permeability test simulating underground stress conditions. Studies on gas saturation distribution reveal that high gas rates (>3,000 m3/d) can be achieved only from oversaturated coal reservoirs in Linxing Block. (2) Two types of oversaturation mechanism, including igneous intrusion-driven oversaturation and sorption capacity-driven oversaturation, exist in deep coals. The former is restricted to regions/blocks influenced by igneous intrusion, and characterized by secondary gas generation and supplementation to deep coals that have substantial similar Langmuir curves to that of shallow coals. The latter may play in deep coals that are not influenced by igneous intrusion, and is characterized by more free gas released from coals after adsorption saturation, due to reduced sorption capacity in deep coals; (3) Oversaturation may exist more frequently in deep coals (in comparison with shallow coals), due to mostly the sorption capacity-driven oversaturation mechanism, and the weaker tectonic deformation and uplifting experienced by deep coals in comparison with shallow coals, which favors gas preservation and oversaturation. (4) Generally, coal permeability in deep coals is low due to the increased effective stress, and exploring oversaturation areas should be a primary concern for CBM development. It appears that in most large, tectonically compressed coal basins, there is a critical depth beyond which the oversaturation areas could occur, presenting opportunities and challlenges for CBM development.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference58 articles.

1. Assessment and development of dry Horseshoe Canyon CBM play in Canada;Bastian,2005

2. Characterizing the dependence of coal permeability to methane adsorption, pore pressure and stress; laboratory testing of Walloon coals from the Surat basin;Bottomley,2017

3. Coal reservoir saturation: Impact of temperature and pressure;Bustin;Am. Assoc. Pet. Geol. Bull.,2008

4. Horseshoe Canyon and belly river coal measures, south central Alberta: Part 2 - modeling reservoir properties and producible gas;Bustin;Bull. Can. Petroleum Geol.,2011

5. Geological controls on coalbed methane reservoir capacity and gas content;Bustin;Int. J. Coal Geol.,1998

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3