Tropical cyclone wind hazard assessment for Donghaitang wind farm (Zhejiang Province, China): Case study

Author:

Li Yuhui,Tang Shengming,Li Yongping,Zhu Rong,Yu Hui

Abstract

Currently, offshore and coastal wind power resources are growing rapidly around the world, especially in China. However, systematic research on the hazard assessment of wind farms under tropical cyclone conditions remains lacking. This study simulated the wind field of tropical cyclones based on a parameterized tropical cyclone wind field model, and analyzed the characteristics of historical tropical cyclones in Donghaitang wind farm (Zhejiang, China). Four extreme tropical cyclone hazard factors including the maximum wind speed (Vmax), maximum duration of wind direction change (Tmax), maximum cumulative wind direction change (Δθmax) and maximum rate of change in wind direction (ΔDmax) were proposed and examined. Then a comprehensive hazard assessment model for wind farms based on the analytic hierarchy process was established, and the risk to the Donghaitang wind farm represented by tropical cyclones during 1949–2021 was evaluated. Results showed that the number and intensity of tropical cyclones made landfall near the coast of Donghaitang wind farm gradually increased with time, which results in a gradual increase in the composite tropical cyclone risk level of the Donghaitang wind farm with time. The numbers and risk levels of tropical cyclones traveling northwestward were much larger than those traveling northward or northeastward. Moreover, the average composite risk index for tropical cyclones passing to the left of the wind farm was 14.3% higher than that for tropical cyclones passing to the right. The large values of Vmax and ΔDmax are main reasons for the high risk of the wind farm, while the other two hazard factors (Tmax, Δθmax) proposed to account for the wind turbine backup power are also of great importance in the design, selection and operation stages of offshore wind turbines. The findings of this study could provide support for hazard assessment of offshore and coastal wind farms exposed to tropical cyclones, including macro site selection of wind farms and type selection of wind turbines.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3