Mesozoic Tectono-Thermal Event of the Qinshui Basin, Central North China Craton: Insights From Illite Crystallinity and Vitrinite Reflectance

Author:

Liu Runchuan,Ren Zhanli,Yang Peng,He Huaiyu,Smith Thomas M.,Guo Wei,Wu Lin

Abstract

The Qinshui Basin is in the Central Orogenic Belt of the North China Craton (NCC), and the production of coalbed methane accounts for 70% of China’s total coalbed methane output. Aiming at the unclear dynamic causes of large-scale coalbed methane accumulation in the basin and the unclear response relationship with the destruction of the NCC, we present joint illite crystallinity and vitrinite reflectance study across the Zijin Mountain and Qincan 1 wells of the Qinshui Basin, respectively. Inverse modeling suggested that tectono-thermal events occurred during the Early Cretaceous, associated with the maximum burial depth and heat flow. The maximum paleo-geothermal temperature and gradient reconstruction results recorded at the Carboniferous strata are 180–190°C and 6.5°C/100 m. The denudation thicknesses recorded by illite crystallinity of Zijinshan and the vitrinite reflectance of the Qincan 1 Well are 3,180.63 m and 3,269.32 m, respectively. We propose that the Qinshui Basin was affected by the extensional environment of the NCC, which caused deep lithospheric thinning and magma upwelling, and a tectono-thermal event occurred during the Early Cretaceous in Qinshui Basin. In addition, the accumulation of coalbed methane, triggered by a tectono-thermal event during the Early Cretaceous, is consistent with the early Cretaceous accumulation and mineralization events in the NCC. Overall, our results reflect the subduction event influence of the western Pacific plate into the East Asian continental plate on the tectono-thermal history of the Central Orogenic Belt of the NCC, which is theoretically significant for clarifying the thermal lithospheric thickness and rheological structure of the basin, as well as the evolutionary history of coalbed methane, and the basin response relationship to the destruction of the NCC.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3