Contribution of water rejuvenation induced by climate warming to evapotranspiration in a Siberian boreal forest

Author:

Park Hotaek,Hiyama Tetsuya,Suzuki Kazuyoshi

Abstract

Water age is a useful metric to evaluate the influence of anthropogenic and natural forcings on the terrestrial water cycle. Current climate warming is enhancing the warming of permafrost soil in the Arctic. Although permafrost is a crucial component of the Arctic terrestrial water cycle, its influence on processes regulating the fluxes and ages of Arctic terrestrial water, particularly soil storage and evapotranspiration, is not well understood. In this study, a water age calculation scheme was implemented into the coupled hydrological and biogeochemical model (CHANGE) to assess the mechanisms through which climate warming affects the soil water storage–evapotranspiration–water age feedback cycle in a boreal forest. Continuous air temperature increase from 1980 to 2016 caused earlier snowmelt and soil thawing, inducing decreasing age trends in snow- and rain-sourced water. The younger water contributed to higher spring evapotranspiration. In summer, the higher evapotranspiration dried the surface soil layer. In turn, the drier surface layer increased the loss of fresh rainwater. Autumn precipitation, preserved in the frozen winter soil until the following spring, became an additional source of water and enhanced plant transpiration in the following summer. This increase accounted for 4.2% of the annual total transpiration. These results suggest that permafrost warming, characterized by earlier soil thawing and later freezing, induced higher evapotranspiration, thereby shortening the residence time of precipitation-sourced water in the active layer and further rejuvenating water in soil layers and in evapotranspiration. Under future climate warming conditions, this effect is expected to intensify and the water cycle will accelerate.

Funder

Japan Society for the Promotion of Science

Japan Science and Technology Agency

Ministry of Education, Culture, Sports, Science and Technology

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. 水トレーサーモデルを用いたレナ川流域における水循環の成分分離;Journal of Japanese Association of Hydrological Sciences;2023-03-27

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3