Author:
Wharton Sonia,Brown Michael J.,Dexheimer Darielle,Fast Jerome D.,Newsom Rob K.,Schalk Walter W.,Wiersema David J.
Abstract
METEX21 was an atmospheric tracer release experiment executed at the Department of Energy’s Nevada National Security Site (NNSS) in the southwestern U.S to study terrain-induced wind and thermodynamic conditions that influence local-scale (<5-km) plume transport under varying atmospheric forcing conditions. Meteorological observations were collected using 10-m tall meteorological towers, 2-m tall tripods with 3-d sonic anemometers, a 3-m tall eddy covariance flux tower, Doppler profiling lidars, Doppler scanning lidars, weather-balloon launched radiosondes, and a tethered balloon equipped with wind, temperature, and aerosol sensors at heights up to 800 m. A smoke tracer was released along three transects in the horizontal and vertical directions and observed with video cameras, aerosol sensors and lidars (via aerosol backscatter). The observations showed evidence of large-scale/synoptic transience as well as local-scale upslope and downslope flows, along-axis valley flows, recirculation eddies on leeward slopes, and periods of strong shear and veer aloft. The release days were classified as either synoptically-driven or locally-driven, and a single case day is presented in detail for each. Synoptically-forced days show relatively narrow smoke plumes traveling down the valley from north to south (with the predominant wind direction), with little deviation in transport direction regardless of the elevation or ground locations of the smoke releases, except near the presence of leeside recirculation eddies. Locally-forced days exhibit a wider range of plume behavior due to the combination of thermally-induced valley and slope flows, which are often flowing in different cardinal directions, and wind shear found aloft at higher altitudes and elevations. We saw evidence of smoke lofting on top of the mesas due to strong upslope flows on these days. A major finding of this experiment was the effectiveness of scanning lidars to measure 2-dimensional plume transport out to a 2–3 km distance; much farther than could be visibly observed. METEX21 was the first of three planned tracer experiments at NNSS, and future experiments will incorporate multiple tracers to improve individual plume identification so that finer resolution flow details can be attained from these measurements, as well as deploy a larger suite of meteorological instrumentation, including more temperature profiling data.
Subject
General Earth and Planetary Sciences