Machine-learning models to predict P- and S-wave velocity profiles for Japan as an example

Author:

Kim Jisong,Kang Jae-Do,Kim Byungmin

Abstract

Wave velocity profiles are significant for various fields, including rock engineering, petroleum engineering, and earthquake engineering. However, direct measurements of wave velocities are often constrained by time, cost, and site conditions. If wave velocity measurements are unavailable, they need to be estimated based on other known proxies. This paper proposes machine learning (ML) approaches to predict the compression and shear wave velocities (VP and VS, respectively) in Japan. We utilize borehole databases from two seismograph networks of Japan: Kyoshin Network (K-NET) and Kiban Kyoshin Network (KiK-net). We consider various factors such as depth, N-value, density, slope angle, elevation, geology, soil/rock type, and site coordinates. We use three ML techniques: Gradient Boosting (GB), Random Forest (RF), and Artificial Neural Network (ANN) to develop predictive models for both VP and VS and evaluate the performances of the models based on root mean squared errors and the five-fold cross-validation method. The GB-based model provides the best estimation of VP and VS for both seismograph networks. Among the considered factors, the depth, standard penetration test (SPT) N-value, and density have the strongest influence on the wave velocity estimation for K-NET. For KiK-net, the depth and site longitude have the strongest influence. The study confirms the applicability of commonly used machine-learning techniques in predicting wave velocities, and implies that exploring additional factors will enhance the performance.

Funder

Korea Hydro and Nuclear Power

Ministry of Land, Infrastructure and Transport

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3