Mapping snow depth and volume at the alpine watershed scale from aerial imagery using Structure from Motion

Author:

Meyer Joachim,Deems Jeffrey S.,Bormann Kat J.,Shean David E.,Skiles S. McKenzie

Abstract

Time series mapping of snow volume in the mountains at global scales and at resolutions needed for water resource management is an unsolved challenge to date. Snow depth mapping by differencing surface elevations from airborne lidar is a mature measurement approach filling the observation gap operationally in a few regions, primarily in mountain headwaters in the Western United States. The same concept for snow depth retrieval from stereo- or multi-view photogrammetry has been demonstrated, but these previous studies had limited ability to determine the uncertainties of photogrammetric snow depth at the basin scale. For example, assessments used non-coincident or discrete points for reference, masked out vegetation, or compared a subset of the fully snow-covered study domain. Here, using a unique data set with simultaneously collected airborne data, we compare snow depth mapped from multi-view Structure from Motion photogrammetry to that mapped by lidar at multiple resolutions over an entire mountain basin (300 km2). After excluding reconstruction errors (negative depths), SfM had lower snow-covered area (∼27%) and snow volume (∼16%) compared to lidar. The reconstruction errors were primarily in areas with vegetation, shallow snow (< 1 m), and steep slopes (> 60°C). Across the overlapping snow extent, snow depths compared well to lidar with similar mean values (< 0.03 m difference) and snow volume (± 5%) for output resolutions of 3 m and 50 m, and with a normalized median absolute deviation of 0.19 m. Our results indicate that photogrammetry from aerial images can be applied in the mountains but would perform best for deeper snowpacks above tree line.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3