Determination of the major axis direction and macroseismic epicenter of the assessed intensity map based on relocated aftershock sequences

Author:

Xu Zhishuang,Liu Jie,Yalikun Alimujiang,Li Xiaoli,Ren Jing,Wen Xintao

Abstract

The rapid assessment of an intensity map following a strong earthquake forms the foundation for risk assessment and emergency response in Chinese mainland. The determination of the major axis direction in the assessed intensity map depends on various factors, including nearby active faults, instrumental intensities, and the distribution of aftershocks. To evaluate the effectiveness of promptly determining the major axis direction based on early aftershock distribution, we relocated and analyzed aftershock sequences occurring within 2 h of eighteen aftershock-rich earthquakes with a magnitude of Ms ≥ 6.0 in Chinese mainland from 2012 to 2021. HypoDD was used for relocation, and the standard deviational ellipse fitting technique was employed for analysis. Comparing the aftershock ellipses resulting from our analysis with the macroseismic intensity maps obtained from field surveys reveals a high level of agreement, with an average difference of approximately 9° in the major axis directions of the aftershock ellipses and the meizoseismal zones. For the majority of earthquakes, regardless of focal mechanisms, the lengths of the major axes of the aftershock ellipses closely correspond to the intensity VIII scale. Additionally, the spatial distribution of aftershocks aids in distinguishing the seismogenic fault from the two fault planes with distinctly different dips as indicated by the focal mechanism solution. Moreover, the distance between the aftershock center and the macroseismic epicenter systematically increases as the dip decreases. These findings hold significant scientific value as they contribute to the prompt determination of assessed intensity maps and provide effective guidance for earthquake emergency response.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3