Research on key parameters of pipeline transportation of waste rock treatment in underground residual space

Author:

Gu Wenzhe,Zhu Lei,Song Tianqi

Abstract

As the key link of coal gangue slurry filling, slurry pipeline transportation is an important guarantee to realize the slurry mixing and safe transportation of gangue from solid powder. To realize the underground excavation gangue of the Huangling No. 2 coal mine without raising the ground, the slurry filling technology is proposed to transport the slurry made by gangue through the pipeline and fill it into the goaf. The phase composition and microstructure characteristics of underground excavation gangue in the Huangling No. 2 coal mine were analyzed by X-ray diffraction and an electron microscope scanning test, the slurry-forming properties of gangue powder with different particle sizes and gradations were studied, and the influence of gangue slurry concentration on its rheological properties was analyzed. The experimental results show that the gangue powder crushed using a cage crusher can be made into stable slurry when the particle grading size is the natural crushing gradation with the upper limit of particle size less than 3 mm. The viscosity of the slurry is positively correlated with the concentration. When the concentration is below 70%, the increase in viscosity is small, and when the concentration is above 70%, the increase in viscosity is significant. It is determined that the concentration of the Huangling No. 2 coal mine slurry is 70%. Based on the determination of slurry preparation parameters, the simulation analysis of slurry pipeline transportation was carried out, the influence of design velocity on the velocity distribution of the pipeline section and the variation law of slurry concentration was explored, and the design velocity of the project is determined to be 1.5 m/s. The engineering practice shows that the slurry preparation parameters are reasonable. The crushing and pulping of gangue under the ground and the safe transportation of a 6 km pipeline are realized, which provides a reference for similar engineering projects.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3