Crustal velocity structure in the South Yellow Sea revealed by the joint tomographic inversion of reflected and refracted seismic waves

Author:

Ma Fei,Hou Fanghui,Li Tongyu,Wu Zhiqiang,Zhang Jianzhong

Abstract

The crustal velocity structure in the South Yellow Sea (SYS) Basin is crucial for understanding the basin’s geological structure and evolution. OBS (ocean-bottom station) data from the OBS2013 line have been used to determine the crustal velocity structure in the SYS. The velocity model of the upper crust in the northern SYS was determined using first-arrival traveltime tomography. The model showed a higher resolution shallow crustal velocity structure but a lower resolution middle-lower crustal velocity structure. The crustal velocity structure, together with the Moho discontinuity in the SYS Basin, was also constructed using a human–computer interactive traveltime simulation, and the result was highly dependent on the prior knowledge of the operator. In this study, we reconstructed a crustal velocity model in the SYS Basin using a joint tomographic inversion of the traveltime and its gradient data of the reflected and refracted waves picked from the OBS data. The resolution of the inverted velocity structure from shallow-to-deep crust was improved. The results revealed that the massive high-velocity body below the Haiyang Sag of the Jiaolai Basin extends to the Qianliyan Uplift in the SYS; the low-velocity Cretaceous strata directly cover the pre-Sinitic metamorphic rock basement of the Sulu orogenic belt; and the thick Meso-Paleozoic marine strata are retained beneath the Meso–Cenozoic continental strata in the northern depression. The Moho depth in the SYS Basin ranges from 28 to 32 km.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3