Spatiotemporal forecasting model based on hybrid convolution for local weather prediction post-processing

Author:

Xiang Li,Xiang Jie,Guan Jiping,Zhang Lifeng,Cao Zenghui,Xia Jilu

Abstract

Future weather conditions can be obtained based on numerical weather prediction (NWP); however, NWP is unsatisfied with precise local weather prediction. In this study, we propose a spatiotemporal convolutional network (STCNet) based on spatiotemporal modeling for local weather prediction post-processing. To model the spatiotemporal information, we use a convolutional neural network and an interactive convolutional module, which use two-dimensional convolution for spatial feature extraction and one-dimensional convolution for time-series processing, respectively. We performed experiments at several stations, and the results show that our model considerably outperforms the traditional recurrent neural network–based Seq2Seq model while demonstrating the effectiveness of the fusion of observation and forecast data. By investigating the influences of seasonal changes and station differences, we conclude that the STCNet model has high prediction accuracy and stability. Finally, we completed the hour-by-hour local weather prediction using the 3-h forecast data and attained similar results to the 3-h local weather prediction that efficiently compensated for the temporal resolution of the forecast data. Thus, our model can enhance the spatial and temporal resolutions of forecast data and achieve remarkable local weather prediction.

Funder

National Natural Science Foundation of China

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference40 articles.

1. Evaluating the performance of regional climate models to simulate the us drought and its connection with el nino southern oscillation;Aryal;Theor. Appl. Climatol.,2021

2. Das problem der wettervorhers-age, betrachtet vom standpunkte der mechanik und der physik;Bjerknes;Meteor. Z.,1904

3. Interpretability of deep learning models: A survey of results;Chakraborty,2017

4. Numerical integration of the barotropic vorticity equation;Charney,1990

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3