3D mineral exploration Cu-Zn targeting with multi-source geoscience datasets in the Weilasituo-bairendaba district, Inner Mongolia, China

Author:

Gao Meng,Wang Gongwen,Xu Yunchou,Mou Nini,Huang Leilei,Zuo Ling,Wu Rong

Abstract

The Weilasituo-bairendaba district is located at the eastern end of the Central Asian Orogenic Belt, which is an important component of the Cu-Pb-Zn polymetallic metallogenic belt on the Western slope of the Greater Xing’an Range in Inner Mongolia, China. The known Cu-Zn deposits such as the Weilasituo Cu-Zn deposit and the Bairendaba Ag-Pb-Zn deposit are the same tectonic-magmatic product. The district’s structure framework consists of the NE-trending regional faults, while the secondary faults provide channels and space for mineralization. The ore-bearing rocks are either Baoyintu Group gneisses or quartz diorites. The typical Cu-Zn deposits exhibit obvious Cu, Pb, Zn geochemical anomaly as well as obvious magnetic anomaly. The district-scale two-dimensional (2D) mineral prospectivity modeling has been reported. Nowadays, three-dimensional (3D) mineral prospectivity modeling is necessary and urgent. Integrated deposit geology and accumulated exploration data, the above four exploration criteria (regional fault, secondary fault, geochemical anomaly and magnetic susceptibility) are used for 3D mineral prospectivity modeling. Filtering (upward continuation, low pass filtering, two-dimensional empirical mode decomposition), magnetic inversion and 3D modeling techniques were used to construct geological models. Excellent machine learning algorithms such as random forest (RF) and XGBoost are applied. The two machine learning methods confirm each other to improve the accuracy of 3D mineral prospectivity modeling. In this paper, repeated random sampling and Bayesian optimization are combined to construct and tune models. This joint method can avoid the contingency caused by random sampling of negative samples, and can also realize automatic optimization of hyperparameters. The optimal models (RF28 and XGBoost11) were selected among thirty repeated training models for mineral prospectivity modeling. The obtained areas under the ROC curves of RF28 and XGBoost11 were 0.987 and 0.986, respectively. The prediction-area (P-A) plot and C-A fractal were used to delineate targets and grade targets. The targets were divided into Ⅰ-level targets and Ⅱ-level targets. The I- and II-targets are not only highly consistent with the known Cu-Zn deposits, but also exhibit obvious ore-forming geological features. The 3D targets are beneficial for Cu-Zn exploration in the Weilasituo-bairendaba district.

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

Reference103 articles.

1. On knowledge-based approach on integrating remote sensing, geophysical and geological information;An,1992

2. Algorithms for hyper-parameter optimization;Bergstra;Adv. Neural Inf. Process. Syst.,2011

3. Hyperopt: A python library for optimizing the hyperparameters of machine learning algorithms;Bergstra,2013

4. Slope stability analysis using Rf, gbm, cart, bt and xgboost;Bharti;Geotech. Geol. Eng.,2021

5. Weights of evidence modelling: A new approach to mapping mineral potential;Bonham-Carter,1989

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3