Two modes of gypsum replacement by carbonate and native sulfur in the Lorca Basin, SE Spain

Author:

Rouwendaal Simon E.,Birgel Daniel,Grossi Vincent,Aloisi Giovanni,Guibourdenche Laetitia,Labrado Amanda L.,Brunner Benjamin,Rouchy Jean-Marie,Peckmann Jörn

Abstract

Organoclastic sulfate reduction and bacterial sulfide oxidation have been suggested to explain the formation of authigenic carbonate and native sulfur replacing gypsum in the Lorca Basin, Spain. To gain more insight into the nature of this replacement, two types of sulfur-bearing carbonate (laminated and brecciated) from the late Miocene Lorca Basin were studied. Petrographic observations revealed that a sulfur-bearing laminated carbonate consists of clay-rich and dolomite-rich laminae with carbonate and native sulfur pseudomorphs after gypsum. Positive δ18Ocarbonate values in the laminae (δ18O = 2.6‰) and lipid biomarkers of halophilic archaea (e.g., extended archaeol) suggest formation under hypersaline conditions. Bacterial sulfate reduction, evidenced by biomarkers such as iso-C15, iso-C16, and iso-C17 fatty acids, produced hydrogen sulfide inducing the abiotic formation of organic sulfur compounds. Gypsum in the laminated carbonate likely dissolved due to undersaturation as evidenced by a low content of carbonate-associated sulfate (3,668 ppm) and 34S-enriched native sulfur (δ34S = 22.4‰), reflecting sulfate limitation. Such 34S-enrichment implies limited fluid flow, which probably restricted the supply of molecular oxygen required for native sulfur formation through oxidation of hydrogen sulfide. Alternatively, sulfate-reducing bacteria may have mediated native sulfur formation directly as a stress response to environmental conditions. The formation of sulfur-bearing calcite in brecciated carbonates is due to post-depositional alteration. Negative δ18O values of the calcite (δ18O = −1.5‰) and a tenfold decrease in carbonate-associated sulfate content (752 ppm) suggest gypsum dissolution and subsequent calcite precipitation from meteoric water. Relatively 34S-depleted native sulfur (δ34S = 13.1‰) leaves it ambiguous whether meteoric water influx could have supplied sufficient molecular oxygen for oxidation of hydrogen sulfide. In case of the brecciated carbonate, methanogenesis, anaerobic oxidation of methane, and bacterial sulfate reduction apparently mediated the formation of secondary minerals as indicated by 13C-depleted lipid biomarkers representative for the respective metabolisms. This study reveals that the conditions and timing of gypsum replacement are variable–taking place 1) during or shortly after gypsum deposition or 2) significantly after sedimentation–and suggests that methanogens in addition to anaerobic methanotrophic archaea and sulfate-reducing bacteria may be involved in the mineral-forming processes in the sedimentary subsurface.

Funder

H2020 Marie Skłodowska-Curie Actions

Publisher

Frontiers Media SA

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3